80 research outputs found

    Cardiac Resynchronization Therapy in Patients with Mild Heart Failure: A Systematic Review and Meta-Analysis of Randomized Controlled Trials

    Get PDF
    # The Author(s) 2011. This article is published with open access at Springerlink.com Objective This review aims at updating the results of cardiac resynchronization therapy (CRT) in mild heart failure patients, and investigating whether CRT can prevent or reverse heart failure progression in an earlier stage. Methods Randomized controlled trials of CRT in patients with New York Heart Association (NYHA) Class I or II heart failure were identified. The effects of CRT on worsening heart failure hospitalization, all-cause mortality, and overall adverse events were meta-analyzed, and the effects of CRT on left ventricular (LV) were systematically reviewed and meta-analyzed. Results Eight studies were identified with a total of 4,302 patients. CRT was associated with a substantial improvement in LVend-systolic volume (WMD −39, 95%CI −41.56 to −36.45). CRT also had a marked effect in reducing new hospitalizations for worsening heart failure by 31 % (RR 0.69, 95%CI 0.60 to 0.79). In addition, CRTsignificantly decreased all-cause mortality by 21 % (RR 0.79, 95%CI 0.67 to 0.93). However, complications in patients with CRT increased by 74 % (RR 1.74, 95%CI 1.44 to 2.11). Conclusions This meta-analysis suggests that CRT could improve the prognosis in patients with mild heart failure and ventricular dyssynchrony, but these improvements are accompanied by more adverse events. Since most patients in the included trials had received ICD therapy, our analysis suggests that CRT could offer an additional benefit. Key words Heart failure. Cardiac resynchronization therapy. Meta-analysi

    Enabling large-scale design, synthesis and validation of small molecule protein-protein antagonists

    Get PDF
    Although there is no shortage of potential drug targets, there are only a handful known low-molecular-weight inhibitors of protein-protein interactions (PPIs). One problem is that current efforts are dominated by low-yield high-throughput screening, whose rigid framework is not suitable for the diverse chemotypes present in PPIs. Here, we developed a novel pharmacophore-based interactive screening technology that builds on the role anchor residues, or deeply buried hot spots, have in PPIs, and redesigns these entry points with anchor-biased virtual multicomponent reactions, delivering tens of millions of readily synthesizable novel compounds. Application of this approach to the MDM2/p53 cancer target led to high hit rates, resulting in a large and diverse set of confirmed inhibitors, and co-crystal structures validate the designed compounds. Our unique open-access technology promises to expand chemical space and the exploration of the human interactome by leveraging in-house small-scale assays and user-friendly chemistry to rationally design ligands for PPIs with known structure. © 2012 Koes et al

    Simulation of a detoxifying organ function: Focus on hemodynamics modeling and convection‐reaction numerical simulation in microcirculatory networks

    Get PDF
    International audienceWhen modeling a detoxifying organ function, an important component is the impact of flow on the metabolism of a compound of interest carried by the blood. We here study the effects of red blood cells (such as the Fahraeus-Lindqvist effect and plasma skimming) on blood flow in typical microcirculatory components such as tubes, bifurcations and entire networks, with particular emphasis on the liver as important representative of detoxifying organs. In one of the plasma skimming models, under certain conditions, oscillations between states are found and analyzed in a methodical study to identify their causes and influencing parameters. The flow solution obtained is then used to define the velocity at which a compound would be transported. A convection-reaction equation is studied to simulate the transport of a compound in blood and its uptake by the surrounding cells. Different types of signal sharpness have to be handled depending on the application to address different temporal compound concentration profiles. To permit executing the studied models numerically stable and accurate, we here extend existing transport schemes to handle converging bifurcations, and more generally multi-furcations. We study the accuracy of different numerical schemes as well as the effect of reactions and of the network itself on the bolus shape. Even though this study is guided by applications in liver micro-architecture, the proposed methodology is general and can readily be applied to other capillary network geometries, hence to other organs or to bioengineered network designs

    Male, National, and Religious Collective Narcissism Predict Sexism

    Get PDF
    Results of three cross-sectional studies indicate that sexism in Poland is associated with collective narcissism—a belief that one’s own group’s (the in-group’s) exaggerated exceptionality is not sufficiently recognized by others—with reference to three social identities: male, religious, and national. In Study 1 (n = 329), male collective narcissism was associated with sexism. This relationship was sequentially mediated by precarious manhood and traditional gender beliefs. In Study 2 (n = 877), Catholic collective narcissism predicted tolerance of violence against women (among men and women) over and above religious fundamentalism and in contrast to intrinsic religiosity. In Study 3 (n = 1070), national collective narcissism was associated with hostile sexism among men and women and with benevolent sexism more strongly among women than among men. In contrast, national in-group satisfaction—a belief that the nation is of a high value—predicted rejection of benevolent and hostile sexism among women but was positively associated with hostile and benevolent sexism among men. Among men and women collective narcissism was associated with tolerance of domestic violence against women, whereas national in-group satisfaction was associated with rejection of violence against women

    Topological organization of multichromosomal regions by the long intergenic noncoding RNA Firre

    Get PDF
    RNA, including long noncoding RNA (lncRNA), is known to be an abundant and important structural component of the nuclear matrix. However, the molecular identities, functional roles and localization dynamics of lncRNAs that influence nuclear architecture remain poorly understood. Here, we describe one lncRNA, Firre, that interacts with the nuclear-matrix factor hnRNPU through a 156-bp repeating sequence and localizes across an ~5-Mb domain on the X chromosome. We further observed Firre localization across five distinct trans-chromosomal loci, which reside in spatial proximity to the Firre genomic locus on the X chromosome. Both genetic deletion of the Firre locus and knockdown of hnRNPU resulted in loss of colocalization of these trans-chromosomal interacting loci. Thus, our data suggest a model in which lncRNAs such as Firre can interface with and modulate nuclear architecture across chromosomes

    Risk and protective factors for structural brain ageing in the eighth decade of life

    Get PDF
    Individuals differ markedly in brain structure, and in how this structure degenerates during ageing. In a large sample of human participants (baseline n = 731 at age 73 years; follow-up n = 488 at age 76 years), we estimated the magnitude of mean change and variability in changes in MRI measures of brain macrostructure (grey matter, white matter, and white matter hyperintensity volumes) and microstructure (fractional anisotropy and mean diffusivity from diffusion tensor MRI). All indices showed significant average change with age, with considerable heterogeneity in those changes. We then tested eleven socioeconomic, physical, health, cognitive, allostatic (inflammatory and metabolic), and genetic variables for their value in predicting these differences in changes. Many of these variables were significantly correlated with baseline brain structure, but few could account for significant portions of the heterogeneity in subsequent brain change. Physical fitness was an exception, being correlated both with brain level and changes. The results suggest that only a subset of correlates of brain structure are also predictive of differences in brain ageing

    Ten years of Nature Reviews Neuroscience: insights from the highly cited

    Full text link
    corecore